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COURSE INTRODUCTION 

 

Differential equation is a foundational branch of mathematics with far-reaching implications in 

various fields, including physics, engineering, economics, and computer science. It serves as a 

fundamental tool for understanding rates of change, optimization, and the behaviour of functions. 

The course is divided into 12 units. Each Unit is divided into sub topics. 

The Units provide students with a comprehensive understanding of the differential equation and 

its types and method of solution. These are just a few examples. The power of differential 

equations lies in their ability to model dynamic systems and predict future behavior based on 

initial conditions and parameters.. 

There are sections and sub-sections inside each unit. Each unit starts with a statement of 

objectives that outlines the goals we hope you will accomplish. Every segment of the unit has 

many tasks that you need to complete.  

We wish you pleasure in the Course. We are certain that you will get better at math if you follow 

through on it. 

Course Outcomes: After the completion of the course, the students will be able to 

1. Recall the concepts of ordinary differential equations (ODEs), partial differential 

equations (PDEs), initial and boundary conditions.. 

2. Explain Differentiate between linear and nonlinear equations, and recognize 

homogeneous and nonhomogeneous equations. 

3. Apply and solve first-order ODEs using methods such as separation of variables, 

integrating factors, and exact equations.. 

4. Analyze higher-order linear ODEs and apply methods like reduction of order and solving 

with special functions. 

5. Evaluate general solutions to second-order linear homogeneous equations with constant 

coefficients and nonhomogeneous terms using methods such as undetermined 

coefficients and variation of parameters. 

6. Create methods to solve PDEs and analyze periodic functions. 

 

Acknowledgements: 

The content we have utilized is solely educational in nature. The copyright proprietors of the 

materials reproduced in this book have been tracked down as much as possible. The editors 

apologize for any violation that may have happened, and they will be happy to rectify any such 

material in later versions of this book. 
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Unit-1 

Introduction to Differential Equations 

 

Learning Objectives: 

 To understand Differential equations     

 To understand Equations of first order and first degree  

 To understand variable separable differentiation    

 

Structure: 

1.1  Differential Equations 

1.2  Order and degree of a differential equation 

1.3  Formation of Differential Equation 

1.4  Solution of a Differential Equation 

1.5  Differential Equations of the first order and first degree 

1.6 Summary 

1.7 Keywords 

1.8 Self-Assessment Questions 

1.9 Case Study 

1.10 References 
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1.1 Differential Equations: 

Differential equations are those that have a differential coefficient.. 

For Example,  

 

 

 

1.2 Order and degree of a differential equation:-  

A differential equation's order is the highest differential coefficient that is present in it, and its 

degree is the highest derivative that remains after the radical sign and fraction have been 

eliminated.

 

Order  is 2.  

Degree of  the Eqn  (1)  and (2) is 1. 

Degree of the Eqn(3) is 2. 

 

1.3 Formation of Differential Equation:- 

The ordinary equation can be differentially expressed and the arbitrary constants removed to 

form the differential equations. 

 

Ex. 1: Eliminates the arbitrary constants and find the order. 
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Exercise
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1.4 Solution of a Differential Equation:- 

 

 

1.5 Differential Equations of the first order and first degree:- 

The standard methods of solving the differential equations are 

(i)  Separation of the variables.  

(ii) Homogeneous equations.  

(iii) Linear equations of the first order. 

(iv) Exact differential equations.  
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Variable Problem 
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7 
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HOMOGENEOUS DIFFENTIAL EQUATIONS  : 

A diffential equation of the form  
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Exercise 

Solve the following 

 

 

EQUATION REDUCIBLE TO HOMOGENEOUS FORM : 
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1.6 Summary. 

Differential equations are mathematical formulas that use derivatives to explain the relationship 

between a function and its derivatives. Ordinary differential equations (ODEs) are used to solve 

functions with a single variable. ODEs are created by expressing the derivatives of an unknown 

function in terms of the independent variable and the function itself. ODEs of first order and first 

degree involve the first derivative of an unknown function. Variable separable is a method for 

solving ODEs in which the variables may be separated on either side of the problem. It entails 

decoupling the variables, integrating both sides, and arriving at a general solution. 

 

1.7Keywords. 

●  rdinary  ifferential equations  
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● Variable separable 

● Homogeneous 

1.8Self-Assessment Questions 

Solve:. 

 

 

1.9Case Study. 

A is a biologist who is researching the population dynamics of a certain species in an ecosystem. 

The species' population is influenced by a variety of factors, including birth rate, mortality rate, 

and accessible resources. Your objective is to use differential equations to simulate population 

increase and analyze population behavior over time. 

Question  

1. Given the birth rate of the species as 0.05 individuals per day and the mortality rate as 

0.03 individuals per day, calculate the net population growth rate per day. 

2. Suppose the accessible resources for the species decrease over time, causing a decline in 

the birth rate from 0.05 to 0.03 individuals per day. If the mortality rate remains constant 

at 0.03 individuals per day, calculate the new net population growth rate and the 

equilibrium population size assuming the birth and mortality rates remain constant. 

1.10 References 

1 Grewal . B.S., “Elementary Engineering Mathematics”, Khanna publications 34th Ed. 

2 Gupta, S. P and Kapoor V.K, Fundamental of Mathematical Statistics, Sultan Chand and 

Sons, New Delhi. 
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Unit-2 

Linear Differential Equations 

 

Learning Objectives: 

 To understand linear Differential equations     

 To understand Equations of first order and first degree  

 To understand Bernoulli equation     

 

Structure: 

2.1  Linear Differential Equations  

2.2 Bernoulli equation 

2.3 Summary 

2.4 Keywords 

2.5 Self-Assessment Questions 

2.6 Case Study 

2.7 References 
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2.1 Linear Differential Equations:- 

A differential equation of the form  

 

Ex.1. Evaluate 

 

 

Ex 2.Evaluate 

 

 



14 
 

Ex. 3.Evaluate 

 

 

Exercise 

Solve: 
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2.2 Bernoulli equation:- 

 

Ex4.Evaluate 

 

 

 

Ex 5.Evaluate 
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Ex 6.Evaluate 
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Ex7 .Evaluate 

 

Ex 8.Evaluate 

 

Solution 
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Ex 9.Evaluate 

 

Ex 10.Evaluate 

 

 

Ex 11.Evaluate 
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2.3 Summary 

A basic type of differential equations in mathematics, linear differential equations are used to 

simulate a variety of biological, physical, and economic systems. This is a brief overview that 

covers the main ideas, categories, approaches, and illustrations. 

 

2.4 Keywords 

 Linear Differential Equation 

 Order 

 First-order 

 Second-order 

 Homogeneous Equation 

 

2.5 Self Assessment questions 
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2.6 Case Study 

Rhythmic Mass, spring, and Damper Mechanism  

Imagine you have a mass (m), a spring (k), and a damper (c) with a damping coefficient. This is 

a mass-spring-damper system. An external force (F(t)) causes the mass to shift from its 

equilibrium position by a distance (x(t)).  

1. Determine the differential equation controlling the mass's motion by analyzing its motion. 

2. Determine the specific solution when (F(t)), using a variety of techniques such variable 

parameters or unknown coefficients. 

 

2.7 References 

1. Kristensson, G. (2020). Second Order Differential Equations: Special Functions and 

Their Classification. Germany: Springer New York. 

2. Keskin, A. Ü. (2018). Ordinary Differential Equations for Engineers: Problems with 

MATLAB Solutions. Germany: Springer International Publishing. 
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Unit-3 

Exact Differential Equations 

 

Learning Objectives: 

 To understand Exact Differential equations     

 To understand reducible to the exact equations 

 To understand variable separable differentiation    

 

Structure: 

3.1  Exact Differential Equations  

3.2 Equation reducible to the exact equations 

3.3 Summary 

3.4 Keywords 

3.5 Self Assessment questions 

3.6 Case Study 

3.7 References 
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3.1 Exact Differential Equations:- 

Differential equations that can be stated in the following form are considered exact differential 

equations, which are a subset of ordinary differential equations. 

M(x,y)dx+N(x,y)dy=0 

The equation is called "exact" if there exists a function F(x,y) such that: 

 

Ex  1. Solve: 

 

 

Ex 2.Solve: 
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Ex 3 Solve: 
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Ex 4.Solve: 

 

 

 

Exercise 

Solve: 
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3.2 Equation reducible to the exact equations:- 

 

Example-5: Solve 

 

 

 

Exercise 

 

Solve: 
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Ex 6: Solve 

 

 

Exercise 

Solve: 
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Ex 7: Solve 

 

 

Exercise 

Solve: 

 

 

 

Ex 8: Solve 
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Ex 9.Solve 
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Exercise 

Solve: 

 

 

Ex 10.Solve 

 

 

 

 

 

 

 

3.3 Summary 
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By identifying them as the differential of a function, exact differential equations belong to a 

unique family of differential equations that are quite simple to solve. This is a brief synopsis that 

covers the main ideas, approaches to solving the problem, and illustrations. 

 

3.4 Keywords 

 Exact differential equations 

 Homogeneous Equation 

 

3.5 Self Assessment questions 

 

 

3.6 Case Study 

The Use of Heat Transfer in Engineering Design As an engineer, you can be assigned the 

responsibility of creating a cooling system for a high-performing electrical gadget, such a high-

power laser or a CPU. To avoid overheating and guarantee optimum performance and lifespan, it 

is essential to comprehend how heat drains from the device during the design phase.  

Question: Your goal is to optimize the cooling system design and simplify the analysis by 

modeling the heat transfer process with differential equations and change of variables.  

 

3.7 References   

1. "Elementary Differential Equations and Boundary Value Problems" by William E. Boyce 

and Richard C. DiPrima  

2. "Advanced Engineering Mathematics" by Erwin Kreyszig  
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Unit-4 

Differential Equations of first order and higher degree 

 

Learning Objectives: 

 To understand Differential equations     

 To understand Equations of first order and higher degree  

 

Structure 

4.1  Differential Equations (DE) of first order and higher degree  

4.2      Orthogonal Trajectories: 

4.3  Wronskian and its properties  

4.4  Summary 

4.5  Keywords 

4.6  Self Assessment questions 

4.7  Case Study 

4.8  References 
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4.1 Differential Equations (DEs) of first order and higher degree:- 

The DE which involve 
  

  
 and denoted by p and form        . 

 

Case 1. Equation solvable for   

Ex. 1: Solve        

 

 

Case 2. Equation solvable for   

Ex 2 :Solve            

 

 

 

Case 3. Equation solvable for   

Ex 3: Solve          



33 
 

 

 

Exercise 

Solve: 

 

 

4.2 Orthogonal Trajectories:- 

 

Working rule to find orthogonal trajectories of curves 
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Ex 4: Find the orthogonal trajectories of curves xy=c 

 

 

 

Ex 5: Solve that the family of parabolas           is self orthogonally 
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4.3 Wronskian and its properties:- 

Remember that we used a fundamental set of two solutions of second order linear homogeneous 

ODE in Standard form to derive the Wronskian and the concept of linearly independent 

functions: 

 

where p and q are both continous on some interval I. 

In order to verify the linear independence of the two solutions to the aforementioned equations, 

we use the Wronskian. It turns out that looking for just two fundamental solutions to the 

aforementioned ODE is not the whole meaning of linear independence. Additionally, not just 

two solutions of the ODE but any two differentiable functions can have their linear independence 

confirmed by a nonzero Wronskian.. 

 

Linear Independence & the Wronskian for any two functions 

Remember how we defined the linear dependence of two functions, f and g, on an interval that is 

open. I: If there are constants c1 and c2, which are not zero, then f and g are linearly dependent on 

each other. 

 

If we choose        , then we say   and   are linearly independent. 

Since we are just thinking about two functions, in this particular example, linear dependence is 

equal to one function being a scalar multiple of the other: 

 

Note that C may be zero. 

 

Linear Independence & the Wronskian for two solutions of ODE 

If we are considering      and      to be two solutions of  ODE 

 

where  and   are both continuous on some interval  , then the Wronskian has some extra 

properties which are given by Abel's Theorem: 
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Fundamentally, this theorem states that if two ODE solutions are linearly independent, then their 

Wronskian is never zero on interval I, that is, c≠0. If not, there is always a zero Wronskian, 

meaning that c=0, and the solutions are linearly dependant. The primary outcome that we believe 

is helpful in determining a basic pair of solutions for a linear homogeneous differential equation 

of second order is this one. 

4.4 Summary 

Differential equations of first order and higher degree encompass a broad category in 

mathematics with significant applications across various fields. Here's a summary: 

First-order differential equations: The derivatives of a function with respect to a single 

independent variable are involved in these equations. They can be classified into various types, 

including: 

 Ordinary Differential Equations (ODEs): Involving one independent 

variable. 

 Partial Differential Equations (PDEs): Involving multiple independent 

variables. 

1. Higher-order differential equations: These equations involve derivatives of a function 

with respect to one or more independent variables, where the highest derivative present is 

of order greater than one. 

4.5 Keywords 

 Higher-order differential equations 

 Linear independence 

 Wronskian 

4.6 Self Assessment questions 
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4.7 Case Study 

Improving Customer Satisfaction in a Restaurant 

Imagine you're the manager of a restaurant facing a decline in customer satisfaction despite 

serving delicious food. You've identified that long wait times and inconsistent service are the 

main issues. 

Question: Your restaurant's current operational model relies heavily on fixed procedures and 

limited flexibility in handling customer needs. This rigidity leads to dissatisfaction when 

customers' preferences or needs aren't met promptly. 

 

4.8 References 

1. "Elementary Differential Equations and Boundary Value Problems" by William E. 

Boyce and Richard C. DiPrima 

2. "Advanced Engineering Mathematics" by Erwin   
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Unit-5 

Linear Homogeneous Differential Equations with Constant Coefficients 

 

Learning Objectives: 

 To understand Linear Homogeneous Differential equations     

 To understand method of complementary function  

 To understand rule of particular integral    

 

Structure 

5.1  Linear Homogeneous Differential Equations of second order with Constant 

 Coefficients  

5.2  Rules to find particular integral 

5.3 Summary 

5.4 Keywords 

5.5 Self Assessment questions 

5.6 Case Study 

5.7 References 
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5.1 Linear Homogeneous Differential Equations of second order with Constant  

 

Coefficients:- 

The General form of D.E of second Order is given by 

 

where Pand Q are constants and R is a function of x and D is diffential operator. 

 

 

 

Complete solution = complementary function + particular integral 

 

Let us consider a L.D.E of first order  
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Rules for complementery function 
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Ex 1: Solve
   

     
  

  
      

 

 

Ex 2: Solve
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Exercise 

Solve 

 

 

5.2 Rules for particular integral 
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Ex 3: Solve 
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Ex 6: Solve 

 

 

Ex 7: Solve 
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Exercise 

Solve 

 

 

Ex 8 : Solve 
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Exercise 

 

Solve 

 

 

 

Ex 9: Solve 
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Ex 10: Solve 

 

Ex 11:Solve  
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5.3 Summary 

Within a particular class of ordinary differential equations (ODEs), known as homogeneous 

differential equations, every term may be represented as a function of the dependent variable and 

its derivatives. When modeling systems where all terms may be represented as homogeneous 

functions of the dependent variable and its derivatives, homogeneous differential equations offer 

a useful foundation. Their answers provide understanding of these systems' behavior and are 

crucial resources for mathematical modeling and research. 

 

5.4 Keywords 

 Differential equation 

 Homogeneous differential equation 

 Complementry function 

 Particular inegral 

 

5.5 Self Assessment Questions 
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5.6 Case Study 

An analysis of electrical circuits: 

When conventional techniques become unfeasible owing to circuit complexity or nonlinearity, 

series solutions can be utilized in electrical engineering to examine intricate circuits. 

Question:Learn about the behavior and functionality of a complicated electrical circuit by 

analyzing it. 

 

5.7 References 

1. "Elementary Differential Equations and Boundary Value Problems" by William E. 

Boyce and Richard C. DiPrima 

2. "Advanced Engineering Mathematics" by Erwin Kreyszig 

  



50 
 

Unit-6 

Total Differential Equations 

 

Learning Objectives: 

 Develop an understanding of fundamental geometric concepts such as points, lines, 

planes, curves, surfaces, and their properties. 

 Enhance their ability to visualize geometric objects and transformations in two-

dimensional and three-dimensional space. 

 Investigate geometric properties such as distance, angle, area, volume, curvature, and 

symmetry, and understand their significance in various contexts. 

 

Structure: 

6.1 Total Differential Equations 

6.2  Solutions and Conditions 

6.3 Geometrical Interpretation and Examples 

6.4 Summary 

6.5 Keywords 

6.6 Self-Assessment Questions 

6.7 Case Study 

6.8 References 
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6.1 Total Differential Equations 

For function z = f(x, y) whose partial derivatives exists, total differential of z is 

 

One can generalize total differentials. When considering a function f = f(x, y, z) with partial 

derivatives, the total differential of ƒ can be found using

 

Ex 1: Find the differential equation corresponding to the surfacexy = c(a-z) where c is a 

parameter. 

Solution 

 

Ex 2: Find the differential equation corresponding to the family of surfaces x
2
 +y

2
+z

2
 = xc 

where c is a parameter. 

Solution 
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6.2 Solutions and Conditions 

 

 

6.3 Geometrical Interpretation and Examples 

A partial derivative has the same geometric interpretation as an ordinary derivative. It shows 

the tangent's slope to the curve that the function at a certain point P represents. In the instance 

of a two-variable function 

Z=(x, y) 

 

 

 

 

 

 



53 
 

Figure 6.1: Geometrical Interpretation partial derivative 

Fig. 6.1 shows the interpretation of
  

  
 and of

  

  
  

  

  
 corresponds to the slope of the tangent to 

the curve APB at point P. Similarly, 
  

  
corresponds to the slope of the tangent to the curve CPD 

at point P 

 

6.4 Summary 

Geometrical interpretation involves understanding fundamental geometric concepts such as 

points, lines, curves, and surfaces, and their properties in two-dimensional and three-dimensional 

space. Through visualization and analytical reasoning, students explore transformations, 

coordinate systems, and geometric properties like distance, angle, and curvature. Geometrical 

interpretation extends to diverse applications in science, engineering, and art, where geometric 

modeling, analysis, and visualization play crucial roles. By mastering geometrical interpretation, 

students develop problem-solving skills, critical thinking abilities, and an appreciation for the 

beauty and utility of geometry across various disciplines. 

 

6.5 Keywords 

 Geometrical Interpretation 

 Curvature 

 

6.6Self-Assessment Questions 

1. How does understanding geometric properties aid in solving real-world problems? 

2. Can you explain the significance of coordinate systems in geometrical interpretation? 

3. What are some common geometric transformations, and how do they affect geometric 

objects? 

4. How does curvature influence the shape and behavior of curves and surfaces? 

5. In what ways do geometric concepts intersect with other disciplines, such as physics or 

computer science? 

6. How does visualization enhance our understanding of geometric relationships and 

structures? 

7. What role does symmetry play in geometric interpretation and analysis? 
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8. How do we use geometric reasoning to prove theorems and solve geometric puzzles? 

9. Can you provide examples of how geometric interpretation is applied in engineering or 

architecture? 

10. What historical developments have shaped our understanding of geometry, and how do 

they influence modern applications? 

 

6.7 Case Study 

Geometric interpretation plays a fundamental role in computer graphics, where visual 

representations of objects and scenes are created and manipulated using mathematical 

models. From rendering lifelike images to simulating virtual environments, geometric 

interpretation enables the creation of immersive visual experiences in various 

applications, including gaming, animation, virtual reality, and computer-aided design 

(CAD). 

Objective:To explore how geometric interpretation is applied in computer graphics and 

its significance in creating realistic and interactive digital environments. 

 

6.8 References 

1. Foley, J. D., van Dam, A., Feiner, S. K., & Hughes, J. F. (2020). Computer Graphics: 

Principles and Practice. Addison-Wesley. 

2. Rogers, D. F., & Adams, J. A. (2019). Mathematical Elements for Computer Graphics 

(2nd ed.). McGraw-Hill. 
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Unit-7 

Second Order Ordinary Differential Equations with Variable Coefficients 

 

Learning Objectives: 

 To understand Differential equations with Variable Coefficients    

 To understand Equations of first order and first degree  

 

Structure 

7.1  Introduction  

7.2  Equation whose one solution is known  

7.3  Normal Form 

7.4  Change of Independent Variable 

7.5 Summary 

7.6 Keywords 

7.7 Self Assessment questions 

7.8 Case Study 

7.9 References 
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7.1 Introduction:-  

In ordinary differential equations (ODEs), variables typically represent quantities that change 

with respect to one or more independent variables. The most common independent variable is 

denoted by 𝑡t and often represents time, but it can also represent other quantities like spatial 

position or another independent parameter. 

 

Here are some common variables and their meanings in ODEs: 

1. Dependent variable: Denoted by y or another letter, it represents the quantity that we're 

trying to solve for. This quantity depends on the independent variable(s) and possibly its 

derivatives. 

2. Independent variable: Denoted by 𝑡 or another letter, it represents the variable with 

respect to which the dependent variable and its derivatives are defined. For example, in 

many physical problems, 𝑡represents time. 

3. Parameters: Parameters are constants or fixed quantities that appear in the ODE but do 

not vary with respect to the independent variable. They often represent physical constants 

or initial/boundary conditions. 

4. Functions of independent variables: These are additional functions that may appear in the 

ODE, either on the right-hand side or as coefficients. They can be functions of the 

independent variable(s) or constants. 

5. Derivatives: Derivatives of the dependent variable with respect to the independent 

variable(s) often appear in ODEs. They represent rates of change or slopes of the 

dependent variable. 

 

 𝑘 is a parameter, representing a constant rate of change. 

 𝑑 𝑑𝑡 is the derivative of  y with respect to 𝑡t, representing the rate of change of   

with respect to time. 
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7.2 Equation whose one solution is known: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



58 
 

Example 1: Solve 

 

 

 

 

Example 2: 
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Example 3: 

 

 

Exercise 

Solve 
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7.3 Normal Form:- 
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Example 4: 

 

 

Example 6: 
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Exercise 

Solve 

 

 

7.4 Change of Independent Variable 
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Example 7: 
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Example 8: 
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7.5 Summary 

By dissecting the issue into more manageable ordinary differential equations (ODEs), separation 

of variables is a potent strategy for solving partial differential equations (PDEs). The essential 

concept is to presume that the PDE's solution may be written as the product of functions, each of 

which depends only on one variable. 
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7.6 Keywords 

 Normal Form 

 Independent Variable 

 Dependent variable 

 Independent variable 

 

7.7 Self Assessment Questions 

 

7.8 Case Study 

A non-mathematical context: designing a multi-stage distillation column for separating 

components in a chemical process. 

Problem Statement:Imagine a chemical engineering company tasked with designing a 

distillation column to separate a mixture of ethanol and water into its pure components. The goal 

is to achieve high purity ethanol as the top product and high purity water as the bottom product. 

 

7.9 References 

1. "Elementary Differential Equations and Boundary Value Problems" by William E. 

Boyce and Richard C. DiPrima 

2. "Advanced Engineering Mathematics" by Erwin Kreyszig 
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Unit-8 

Partial Differential Equations (PDEs) 

 

Learning Objectives: 

 Define partial differential equations (PDEs) of second order and distinguish them from 

other types of PDEs, such as first-order PDEs. 

 Identify and derive the canonical forms of second-order PDEs, such as the Laplace, heat, 

and wave equations, in various coordinate systems. 

 Discuss numerical techniques, such as finite difference, finite element, and spectral 

methods, for approximating solutions to PDEs. 

 

Structure 

8.1  Partial differential Equations  

8.2  Order of a Partial differential Equations 

8.3  Lagrange’s Method and Standard Forms 

8.4  Charpit’s Method 

8.5  Keywords 

8.6  Self-Assessment Questions 

8.7  Case Study 

8.8  References 
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8.1 Partial differential Equations:- 

An equation with z as the dependent variable and x, y, and z as the independent variables, such 

that z = f(x,y), is called a partial differential equation. We also use the notations 

 

8.2 Order of a Partial differential Equations 

A partial differential equation's order is determined by the highest partial derivative that 

appears in the equation, and its degree is determined by that derivative's degree. 

For example, (1) x + y 

 

Here, z is dependent and x, y are independent and this equation is of order one and degree one. 

 

This is an order two, degree equation where v is dependent and x, y, and z are independent.  

The study of wave equations, heat equations, electromagnetic, radar, ratios, television, and 

other subjects will all heavily rely on partial differential equations.  

 

Formation of Partial Differential Equation(PDE) 

PDE can be obtained by: 

(i) Elimination of arbitrary constants 

(ii) Elimination of arbitrary functions involving two or more variables. 

(i) Elimination of Arbitrary Constants 

Let  f(x, y, z,a,b) = 0  ...(1) 

consist of an equation with the two arbitrary constants "a" and "b." Partially differentiating this 

equation in relation to x and y yields 
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8.3 Lagrange’s Method and Standard Forms 

An equation of the form Pp + Qq = R is said to be Lagrange's type of partial differential 

equations. 

 

Steps for solving Pp+Qq=R by Lagrange's method 

STEP 1: Insert the first-order linear partial differential equation that has been provided in the 

standard from 

Pp+Qg=R ………..(1) 

STEP 2:Note down the following Lagrange's auxiliary equation for (1): 

 

STEP 3:Apply the established techniques to solve (2). As two independent solutions of (2), let 

u(x, y, z) = c1 and v(x, y, z) = c2. 

STEP 4: The general solution (or integral) of (1) is then written in one of the following three 

equivalent forms:                             being an arbitrary function. 

 

Example 1:Solve a(p+q) = z 
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Example 2: Solve 

(mz - ny)p + (nx - lz)q = ly – mx 
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Example 3: Solve 
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8.4Charpit’s Method 

In the event that the provided equation cannot be reduced to one of the four first-order non-

linear partial differential equation types mentioned above, we solve all first-order partial 

differential equations using a method developed by Charpit. This method is known as Charpit's 

method. 

 

Example4 : 
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Example 5: 

 

 

8.5 Summary 

Understanding and solving second-order PDEs is crucial for modeling and analyzing complex 

physical systems, predicting their behavior, and designing optimal engineering solutions. These 

equations play a fundamental role in diverse areas of science and technology, contributing to 

advancements in fields ranging from aerospace engineering to medical imaging. 

 

8.6 Keywords 

 Partial differential Equations  

 Order of a Partial differential Equations 

 Lagrange’s Method  

 Charpit’s Method 
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8.7 Self-Assessment Questions 

1. How do boundary value problems (BVPs) and initial value problems (IVPs) arise in the 

context of second-order PDEs, and what techniques are used to solve them? 

2. What role do boundary conditions and initial conditions play in determining solutions to 

second-order PDEs? 

3. Can you explain the concept of characteristic curves or surfaces in the context of 

hyperbolic and parabolic second-order PDEs? 

4. How do numerical methods, such as finite difference, finite element, and spectral 

methods, contribute to the solution of second-order PDEs? 

 

8.8 Case Study 

1. Which of the following represents a linear partial differential equation? 

 

 

2. The heat equation, describing the flow of heat in a given region over time, is an example of 

which type of partial differential equation? 

A)  Elliptic 

B)  Parabolic 

C)  Hyperbolic 

D)  Bilinear 

 

3. Which of the following methods is commonly used to solve homogeneous linear partial 

differential equations with constant coefficients? 

A)  Method of characteristics 

B)  Fourier transform 

C)  Separation of variables 

D)  Laplace transform 
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4. Consider the partial differential equationutt – c
2
uxx = 0 , where c is a constant. What type of 

equation is this? 

A)  Parabolic 

B)  Hyperbolic 

C)  Elliptic 

D)  Transcendental 

 

8.9 References 

1. Evans, L. C. (2020). Partial Differential Equations (2nd ed.). American Mathematical 

Society. 

2. Strauss, W. A. (2018). Partial Differential Equations: An Introduction. John Wiley & 

Sons. 
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Unit-9 

Classification of Second Order PDEs 

 

Learning Objectives: 

 Understand the concept of heat diffusion and its mathematical representation. 

 Grasp the concept of wave propagation and its mathematical description. 

 Understand the concept of harmonic functions and their relation to the Laplace equation. 

 

Structure: 

9.1 Wave Equations 

9.2  Important PDEs in science and engineering  

9.3 Summary 

9.4 Keywords 

9.5 Self-Assessment Questions 

9.6 Case Study 

9.7 References 
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9.1 Wave Equations 

Essentially, the one-dimensional wave equation derives from the simplest simple case of motion 

of a stretched string, or more specifically, its transverse vibrations, like those generated by the 

string of a musical instrument. Assume that a string with x = 0 and x = L is positioned down the 

x-axis, stretched, and then fastened at both ends. The string is then released, deflected, and given 

time (t = 0) to vibrate. The string's deflection, u, is the quantity of interest at any position x, 0 < x 

≤ L, and at any time t>0. u = u(x, t) is written. The graphic shows the string's potential 

displacement at a given time t.  

 

 

Figure 9.1 : Possible displacement of  string 

 

Subject to various assumptions : 

1. ignoring air resistance and other dampening factors  

2. Ignore the string's weight  

3. at any given time, the string's tension is tangential to its curvature.  

4. that there are little transverse oscillations produced by the string, meaning that each particle 

travels just vertically and has a modest deflection and slope at each place.  

it can be shown, by applying Newton's Law of motion to a small segment of the string, that u 

satisfies the PDE 

 

where 

 

being the mass per unit length of the string and T being the (constant) P horizontal component 

of the tension in the string.  
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9.2 Important PDEs in science and engineering:- 

1. Poisson's equation 

 

where f(x, y) is a given function.  

2. Helmholtz's equation 

 

which arises in wave theory. 

3. Schrodinger's equation 

 

h is Planck's constant 

4. Transverse vibrations in a homogeneous rod 

 

where u(x, t) is the displacement at time t of the cross-section through x. 

Except from the final example, which is fourth order, all of the PDEs we have studied are second 

order since those are the highest order derivatives that can emerge. 

 

9.3 Summary 

These equations, which provide light on processes including heat transfer, wave propagation, and 

steady-state distributions of scalar fields, are essential to physics and engineering. Their 

derivations entail the application of fundamental physics concepts to particular physical 

scenarios, such as conservation laws and Newton's laws of motion. 

 

9.4 Keywords 

 Heat diffusion 

 Thermal diffusivity 
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 Infinitesimal element 

 Wave speed 

 Divergence 

 Gradient 

 

9.5 Self Assessment questions 

Q1. The heat equation is derived from:  

 a) Newton's second law  

 b) Fourier's law of heat conduction and the conservation of energy  

 c) Maxwell's equations  

 d) Hooke's law 

 

Q2.  The wave equation describes the propagation of waves through a medium by utilizing:  

 a) Ohm's law  

 b) Newton's second law 

  c) Boyle's law 

 d) Coulomb's law 

Q3.  The Laplace equation describes:  

 a) The distribution of temperature over time in a material  

 b) The propagation of waves through a medium 

 c) Steady-state phenomena with no sources or sinks of a scalar field  

 d) The behavior of magnetic fields 

 

Q4.  The thermal diffusivity (α) in the heat equation represents:  

 a) The rate of change of temperature with respect to time  

 b) The rate of heat transfer  

 c) The thermal conductivity of the material  

 d) The rate of change of temperature with respect to position 

 

Q5.  In the wave equation, the wave speed (ccc) is determined by:  

 a) The density of the medium  
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 b) The tension in the medium  

 c) Both the density of the medium and the tension in the medium  

 d) Neither the density nor the tension in the medium 

 

9.6 Case Study 

Consider a rod of length L with its ends kept at zero temperature. The initial temperature 

distribution along the rod is given by u(x,0)=f(x) 

1. Derive the heat equation for the temperature distribution u(x,t)) in the rod. 

2. Explain the physical meaning of each term in the heat equation. 

 

9.7 References 

1. "Elementary Differential Equations and Boundary Value Problems" by William E. 

Boyce and Richard C. DiPrima 

2. "Advanced Engineering Mathematics" by Erwin Kreyszig 
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Unit-10 

The Cauchy Problem 

 

Learning Objectives: 

 The primary learning objective of Cauchy-Euler equations is to understand how to solve 

second-order linear ordinary differential equations with variable coefficients.  

 Understand the characteristic form of Cauchy-Euler equations, which involves terms with 

derivatives of different orders multiplied by powers of the independent variable. 

 

Structure: 

10.1  Cauchy-Euler Equations and Special Cases 

10.2  Cauchy-Euler Substitution 

10.3 Summary 

10.4 Keywords 

10.5 Self-Assessment Questions 

10.6 Case Study 

10.7 References 
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10.1 Cauchy-Euler Equations and Special Cases 

The differential equation 

 

is called the Cauchy-Euler differential equation of order n. The symbols ai, i=0,...,n are constants 

and an  0. 

The second-order Cauchy-Euler formula 

 

A theoretical justification for examining the Cauchy-Euler equation is its uniqueness as a 

differential equation with non-constant coefficients and a known closed-form solution. The 

change in variables (x, y) → (t, z) provided by equations is the cause of this fact. 

 

 

The Cauchy-Euler equation is transformed into a constant-coefficient differential equation. Like 

the constant-coefficient equations, the Cauchy-Euler equations also have closed-form solutions. 

 

Example 1: Solve 

 

 

 



83 
 

7.5 Cauchy-Euler Substitution:- 

The second step is to use y(x) = z(t) and 

 

 

10.3 Summary 

Comprehending these particular scenarios is essential for resolving Cauchy-Euler equations and 

using them for diverse practical issues in domains like physics, engineering, and economics. 

 

10.4 Keywords 

 Cauchy-Euler Equations 

 Second-Order Linear ODEs 

 Distinct Real Roots 

 Repeated Real Roots  

 Complex Roots 

 

10.5 Self Assessment Questions 

1. What is a Cauchy-Euler equation? 

2. Write the general form of a second-order Cauchy-Euler differential equation. 
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3. How does the Cauchy-Euler equation differ from a standard linear differential 

equation? 

4. What substitution is typically used to solve a Cauchy-Euler equation? 

5. Explain the purpose of the substitution x=e
t
 in solving a Cauchy-Euler equation. 

6. How do you solve a Cauchy-Euler equation with distinct real roots? 

 

10.6 Case Study 

1. Describe a physical or engineering system where Cauchy-Euler equations naturally arise. 

2. Identify the main characteristics of a problem that suggests the use of a Cauchy-Euler 

equation. 

 

10.7 References 

1. Wiggins, S). Introduction to Applied Nonlinear Dynamical Systems and Chaos. 

Springer. 

2. Hale, J. K., &Koçak, H. Dynamics and Bifurcations. Springer. 
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Unit-11 

Initial Boundary Value Problems 

 

Learning Objectives: 

 Understand the stability, consistency, and convergence criteria for numerical solutions of 

IBVPs.  

 Understand the impact of boundary and initial conditions on the behavior and solution of 

differential equations. 

 Gain exposure to advanced topics related to IBVPs, such as non-linear IBVPs, multi-

dimensional IBVPs, and stochastic IBVPs. 

 

Structure: 

11.1  Solving the wave equation for the infinite string  

11.2  Semi-Infinite String with a fixed end  

11.3  Semi-Infinite String with a free end  

11.4  Summary 

11.5 Keywords 

11.6 Self-Assessment Questions 

11.7 Case Study 

11.8 References 
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11.1 Solving the wave equation for the infinite string:- 

Initial Boundary Value Problems (IBVPs) in differential equations are mathematical problems 

that involve finding a function that satisfies a differential equation within a given domain and 

also meets specified initial conditions and boundary conditions. These problems are crucial in the 

study of physical systems described by partial differential equations (PDEs) and ordinary 

differential equations (ODEs). 

Here's an overview of IBVPs: 

 

1. Initial Conditions 

Initial conditions specify the state of the system at the beginning of the observation period. For 

example: 

 In ODEs, an initial condition might specify the value of the function and possibly its 

derivatives at a specific point. 

 

 In PDEs, initial conditions might specify the value of the function over a spatial domain 

at an initial time. 

 

2. Boundary Conditions 

Boundary conditions specify the behavior of the function on the boundary of the spatial domain. 

Common types include: 

 Dirichlet Boundary Conditions: The value of the function is specified on the boundary. 

 

 Neumann Boundary Conditions: The derivative of the function is specified on the 

boundary. 
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 Mixed Boundary Conditions: A combination of Dirichlet and Neumann conditions. 

 

3. Examples of IBVPs 

Example 1: 

A popular PDE for simulating the temperature or heat distribution over time in a given area is the 

heat equation. It may be written as follows for a one-dimensional rod: 

 

 

 

Example 2: Wave Equation 

The wave equation simulates how waves, like light or sound waves, travel through a medium.: 
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4. Methods of Solution 

Separation of Variables 

According to this approach, the answer can be expressed as the product of functions that are all 

dependent on the same coordinate. For example, for the heat equation: 

 

By substituting into the PDE and separating the variables, we obtain two ordinary differential 

equations that can be solved independently. 

 

11.2 Semi-Infinite String with a fixed end: 

The problem of a semi-infinite string with a fixed end is a classic example in the study of wave 

equations in mathematical physics. It involves finding the displacement of a string that extends 

infinitely in one direction and is fixed at one end. This scenario is governed by the wave 

equation. 

 

Problem Setup 

Consider a string that is fixed at x=0 and extends infinitely in the positive x-direction. The wave 

equation governing the motion of the string is: 

 

Boundary and Initial Conditions 

1. Boundary Condition at the Fixed End: The displacement is zero at the fixed end (x=0) 

u(0,t) = 0 for all t > 0 

 

2. Initial Conditions: These specify the initial displacement and velocity of the string: 

u(x, 0) = f(x) for x>0 
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Reflection Method and D'Alembert's Solution 

1. Extension by Reflection: Define the displacement function for < 0 such that the extended 

function is odd: 

 

2. Wave Equation Solution: For the extended function u(x, t), the wave equation remains 

thesame, but now it is defined on the entire real line -∞ < x < ∞. 

 

3. D'Alembert's Solution: The general solution of the wave equation on an infinite domain is 

given by: 

 

where F and G are determined by the initial conditions. 

 

4. Initial Conditions: To find F and G: 

 

5. Solving for F and G: 

 

6. Complete Solution: 

 

 This approach allows for solving the wave equation with the given initial and boundary 

conditions for a semi-infinite string with a fixed end. 
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11.3 Semi-Infinite String with a Free end: 

The problem of a semi-infinite string with a free end involves solving the wave equation for a 

string that is fixed at one end and extends infinitely in one direction, with the other end being 

free. This type of problem is governed by the same wave equation but with different boundary 

conditions reflecting the free end's behavior. 

Consider a string fixed at x=0and extending infinitely in the positive x-direction. The wave 

equation governing the motion of the string is: 

 

 

where u(x, t) represents the displacement of the string at position & and time t, and c is the wave 

speed. 

 

Boundary and Initial Conditions 

 

1. Boundary Condition at the Fixed End: The displacement is zero at the fixed end (x = 0): 

u(0,t) = 0 for all t > 0 

 

2. Boundary Condition at the Free End: The spatial derivative of the displacement is zero at 

the free end (x→ ∞): 

 

3. Initial Conditions: These specify the initial displacement and velocity of the string: 

u(x, 0) = f(x) for x>0 
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Reflection Method and D'Alembert's Solution 

 

1. Extension by Reflection: Similar to the case of a fixed end, we can extend the problem to the 

entire real line by reflecting the function about the fixed end. However, since the other end is 

free, we need to ensure that the reflected wave respects the free-end boundary condition. 

 

2. Defining the Extended Function: 

 

 

 

3. Ensuring the Free-End Condition: We need to ensure that ũ satisfies the wave equation for 

all x Є R. The boundary condition at x = 0 is automatically satisfied because of the reflection. 

The condition at the free end (as → ∞) translates into ensuring that the spatial derivative of the 

solution does not become unbounded. 

 

11.4 Summary 

The solution for the semi-infinite string with a free end is constructed by extending the problem 

to an infinite domain, ensuring the boundary conditions are satisfied by reflecting the function, 

and applying D'Alembert's solution. This approach effectively handles the initial conditions and 

the boundary condition at the fixed end, providing the displacement of the string over time. 

 

11.5 Keywords 

 Initial Conditions 

 Boundary Conditions 

 Differential Equations 

 Ordinary Differential Equations  

 Partial Differential Equations  
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11.6 Self-Assessment Questions 

1. What is an Initial Boundary Value Problem (IBVP)? 

2. What distinguishes an IBVP from a Boundary Value Problem (BVP)? 

3. What are the typical components of an IBVP? 

4. Can you give an example of a physical phenomenon modeled by an IBVP? 

5. How do initial conditions differ from boundary conditions in an IBVP? 

6. What role does the domain of the problem play in an IBVP? 

7. What is a common method for solving IBVPs numerically? 

8. How does the method of separation of variables apply to IBVPs? 

 

11.7 Case Study 

A manufacturing plant is monitoring the temperature distribution along a metal rod that is 

being heated at one end while the other end is kept at a constant lower temperature. The rod is 

1 meter long. The heat conduction in the rod is modeled by the heat equation, a partial 

differential equation, which must be solved to understand how the temperature evolves over 

time along the length of the rod. 

Problem Statement:The temperature distribution u(x, t) along the rod is governed by the heat 

equation: ut=  uxx 

where  is the thermal diffusivity of the rod's material. The rod has the following initial and 

boundary conditions: 

 Initial temperature distribution: u(x, 0) = f(x) 

 Boundary condition at the heated end (x =0): u(0,t) = T0 

 Boundary condition at the cooler end (x = = 1): u(1,t) = T1 

 

11.8 References 

1 Wiggins, S. Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer. 

2 Hale, J. K., &Koçak, H. Dynamics and Bifurcations. Springer. 
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Unit-12 

Non-Homogeneous Wave Equation 

 

Learning Objectives: 

 Differentiate between homogeneous and non-homogeneous wave equations. 

 Understand the role of initial and boundary conditions in solving the non-homogeneous 

wave equation. 

 

Structure: 

12.1  Non-Homogeneous Wave Equation 

12.2  Method of Separation of Variables 

12.3  Solving the Heat Conduction problem 

12.4 Summary 

12.5 Keywords 

12.6 Self-Assessment Questions 

12.7 Case Study 

12.8 References 
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12.1 Non-Homogeneous Wave Equation: 

Now we consider the nonhomogeneous (NH) wave equation on the real line 

 

subject to the following initial conditions (IC): u(x, 0) = g(x), u’t(x, 0) = (x). 

Remark: Solution of the NH equation can be represented as a sum of two other solutions: 

Problem I: the non -homogeneous wave equation Vtt - c2vxx = f with homogeneous IC: 

v(x, 0) = 0,v{(x, 0) = 0, 

Problem II: the homogeneous wave equation utt - c2uxx = 0 with nonhomogeneous IC: 

u(x, 0) = g(x),ut(x, 0) = h(x). 

Thus, it suffices only to consider the first problem. We apply the method due to Duhamel (Jean 

Marie Constant Duhamel (1797-1872), a French mathematician). 

 

Namely, consider an auxiliary problem 

 

Here f(x, s) is the right hand side in our equation given above. 

 

Duhamel's principle 

 Assume that U(x, t, s) is a C
2
-function of x Є R and t> 0, continuous in s, s>0. If U solves the 
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above auxiliary problem, then solution of the Problem I is given by 

 

12.2 Method of separation of variables:- 

With specified initial and boundary conditions, the method of separation of variables is a potent 

tool for solving linear partial differential equations (PDEs) of order two. Here is a detailed 

explanation of this method: 

 

1. Assumption: Assuming that the given PDE's solution can be expressed as a product of 

functions, each of which depends only on one variable, is the first step in the separation 

of variables technique. For instance, we suppose the following solution for a PDE with 

two variables, x and t: 

u(x,t) = X(x)T(t) 

where X(x) is a function of x alone, and T(t) is a function of t alone. 

2. Substitution: Substitute the assumed solution into the original PDE. This substitution 

will usually result in an equation where the terms involving a are separated from the 

terms involving t. 

 

3. Separation:Once substitution is complete, the variables are split apart so that the 

functions on either side of the equation are solely dependent on an or t. Any value of t 

and. will result in these two sides being equal, hence each side must equal a constant. 

Two ordinary differential equations (ODEs) are produced as a result of this procedure. 
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4. Solve the ODES: Solve these ODEs separately. The solutions to these ODEs will 

involve arbitrary constants that can be determined using initial and boundary conditions. 

 

Example 1: 

Let's illustrate this with a simple example: the heat equation ut = kuxx 

 

1. Assume: Assume u(x, t) = X(x)T(t). 

2. Substitute: Substitute into the heat equation: 

 

 

12.3 Solving the Heat Conduction problem:-  

The heat conduction problem, also known as the heat equation problem, involves finding the 

temperature distribution in a given domain over time.  

 

Boundary Conditions 

Assume the rod is of length L and the ends are maintained at a fixed temperature (usually taken 

as zero for simplicity): 

u(0,t) = 0 and u(L,t) = 0 for all t 

 

Initial Condition 

The initial temperature distribution along the rod is given by: 

u(x, 0) = f(x) 
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Solution Using Separation of Variables 

1. Assume a Solution: Assume a solution of the form: 

u(x,t) = X(x)T(t) 

2. Substitute: Substitute this into the heat equation: 

 

3. Separate Variables: Divide both sides by kX (x)T(t): 

 

Here,   is a separation constant. This gives us two ordinary differential equations: 

 

4. Solve the Spatial ODE: Consider the spatial part: 

 

 

with boundary conditions X(0)=0 and X (L) = 0. 

The solutions are: 

 

 

12.4 Summary: 

Scientists and engineers may forecast and analyze complicated wave behaviors in a variety of 

physical systems by comprehending and solving the non-homogeneous wave equation. This can 

provide light on how external factors impact wave interactions and propagation. 

. 
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12.5Keywords 

 Wave Equation 

 Non-homogeneous 

 Source Term 

 Initial Conditions 

 Boundary Conditions 

 

12.6 Self-Assessment Questions 

1. What is the role of the source term f(x,t)f(x,t)f(x,t) in the non-homogeneous wave 

equation? 

2. Give an example of a physical situation that can be modeled by a non-homogeneous 

wave equation. 

3. What is the method of undetermined coefficients? 

4. Explain how the method of separation of variables can be used for solving the non-

homogeneous wave equation. 

5. Describe D'Alembert's solution to the non-homogeneous wave equation. 

 

12.7 Case Study 

An electromagnetic wave propagates along a transmission line, influenced by external sources 

such as power sources and antennas. The wave behavior is governed by the non-homogeneous 

wave equation. 

Questions: 

1. Equation Formulation: Define the non-homogeneous wave equation governing the 

propagation of electromagnetic waves in the transmission line. What factors determine 

the form of the source term ( ,)? 

2. Analytical Solution Techniques: Explore possible analytical methods to solve the non-

homogeneous wave equation for the electromagnetic waves. How would you handle the 

non-homogeneous term in the solution process? 
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3. Numerical Simulation: Propose a numerical method to simulate the propagation of 

electromagnetic waves in the transmission line. Discuss the implementation of this 

method and how it accounts for the non-homogeneous source term. 

 

12.8 References 
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